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An algorithm for determination of the weights of smoothness penalty constraints
for the four-dimensional variational data assimilation technique is proposed and
evaluated. To study the nature of smoothness penalty constraints, a simple nonlinear
harmonic oscillator problem is first considered. Penalizing smoothness constraints is
found to make the modified Hessian matrix of the cost function more positive definite,
akin to the idea behind the modified line search Newton’s methods. However, the
use of the derivative smoothness constraints with a fixed coefficient does not warrant
uniform imposition of these constraints at every iteration. A remedy is to control the
ratio of the smoothness penalty function over the cost function, which can dramat-
ically increase the positive definite area. On the other hand, the large smoothness
coefficients obtained from this approach can deteriorate the convergence property
of the minimization problem. Based on these observations, an algorithm for tuning
the weights of smoothness constraints is proposed to overcome the aforementioned
problems. The algorithm is first applied to a simple dynamic problem. It is then tested
on the retrieval of microscale turbulent structures in a simulated convective bound-
ary layer. This method is further evaluated on the retrieval of a strong meso-scale
thunderstorm outflow from Doppler radar data. The results show that the algorithm
yields efficient retrieval. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

The variational data assimilation method has been developed to combine limited ob-
servational data measured by remote sensing techniques, such as satellite and radar, with
dynamical models to acquire more complete wind and temperature data for meteorological
and oceanographic applications. For instance, Sun and Crook [11] used the four-dimensional
variational data assimilation technique (4DVAR) to retrieve the wind and thermodynamic
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fields of a gust front from Doppler radar data. Sun and Crook [12, 13] further incorporated
microphysical models into the 4DVAR model and retrieved the detailed wind, thermody-
namics, and microphysics of a convective storm from radar data. Wu et al. [18] assimilated
radar data of a severe thunderstorm into a cloud model using the 4DVAR technique. Lin
et al. [3] applied the 4DVAR technique to retrieve microscale turbulent structures from a
simulated convective boundary layer.

The concept of data assimilation is to find the controls that minimize the differences
between the controls and observations subject to the constraints imposed by the model
equations. Due to insufficient observational data and data error, data retrieval may be in-
accurate or become ill-conditioned. Ooyama [8] indicated that derivative constraints can
serve as a low-pass spatial filter to remove the undesirable errors at unresolved scales
and ensure that the spatial scales of retrieved structures are not smaller than those of ob-
servations. Thacker [16] demonstrated that the use of smoothness penalties on the ad-
joint model of a three-wave simple dynamic system yields reasonable data retrieval in
spite of sparse observations. The smoothness constraints can be regarded as bogus data,
such as zero hypothetical slope and curvature in the objective space, reducing the ratio of
observational data to the number of degrees of freedom of the model. Thus, these con-
straints can improve the conditioning of the minimization problem and speeds up the
convergence. Long and Thacker [5] showed that with reduced observations in the data
assimilation into an equatorial ocean model, penalizing departures of second derivatives
of controls from smoothness results in satisfactory results. Sun et al. [10] demonstrated
that the temporal and spatial smoothness constraints provide supplemental information
on the retrieved variables and accordingly yield better solutions in the 4DVAR assim-
ilation of simulated single-Doppler radar data. Sun and Crook [11] further applied the
smoothness penalties to the adjoint retrieval of a gust front from the dataset observed
during the Phoenix II experiment. The retrieval quality was found to improve remark-
ably. Yang and Xu [19] examined the effect of the spatial smoothness constraints on
the systematic and nonsystematic errors in a one-dimensional advection equation. They
found that these constraints can reduce both types of errors effectively. Lin et al. [3]
demonstrated that spatial smoothness constraints can effectively improve the quality of
microscale turbulent structures retrieved from a simulated convective planetary boundary
layer.

It is noteworthy that the spatial smoothness penalty coefficients used in Long and
Thacker [5], Sun and Crook [11], and Lin et al. [3] are 1.0, 0.05, and 0.00005, respec-
tively. This indicates that the weights of smoothness penalty constraints for the mesoscale
applications can be several orders of magnitude greater than those for the microscale appli-
cations. At times the weights for the same problem but with varying density of observational
data require adjustment for optimal retrieval. It is desirable to have some rules to follow
in determination of the weights of smoothness penalties. Therefore, the objectives of the
paper are two-fold. One objective is to analyze a simple dynamic system to shed light on
the nature of the smoothness penalty constraints and to establish some general guidelines
in determination of the weights. The other objective is to use on these guidelines to de-
velop a generic algorithm that can reduce the degrees of freedom in determination of the
smoothness weights for large problems and that is applicable to the 4DVAR retrieval of
atmospheric flow structures at both micro- and mesoscales. This feature is a necessity in
developing an adaptive 4DVAR technique for integration of various sources of data without
elaborate tuning of the weights.
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The paper is organized as follows. In Section 2, a simple nonlinear harmonic oscillator is
first considered to elucidate the features of smoothness constraints. In Section 3, we examine
the condition numbers of the smoothness penalty function and the cost function. Their re-
lationship with data density is investigated. The conditions for selecting suitable weights of
smoothness constraints are discussed. Based on these conditions, an algorithm is proposed
and tested on the simple problem. In Section 4, we briefly describe the 4DVAR technique
used in this study. The formulation of the procedure for tuning smoothness constraints in
4DVAR based on the preceding algorithm is presented in Section 5. In Section 6, the pro-
posed procedure is tested on the retrieval of microscale turbulent structures in a convective
boundary layer using the approach of identical twin experiments. In these experiments,
observational data are synthetically generated by the prediction model of the 4DVAR. In
Section 7, the proposed procedure is applied to retrieve mesoscale convective atmospheric
structures from Doppler radar data. Concluding remarks are made in Section 8.

2. A SIMPLE SYSTEM

Consider a simple harmonic oscillator, which describes the motion of a spring and is
governed by the set of ordinary differential equations,

du

dt
= −ax(1 + bx2) − cu, (1)

dx

dt
= u, (2)

where u is the speed of the oscillator at displacement x . The values of parameters a, b, and
c are arbitrarily set to a = 1, b = 10, and c = 1. b controls the degree of nonlinearity and
b = 0 reduces to a linear system. The damping term −cu represents a frictional force. A
semi-implicit discretization of the above equations as suggested by [15] gives

1

�t
(un+1 − un) = −a

2
(xn+1 + xn)

[
1 + b

4
(xn+1 + xn)2

]
− c

2
(un+1 + un), (3)

1

�t
(xn+1 − xn) = 1

2
(un+1 + un). (4)

Here the superscript n denotes the time index and �t the size of time step. With
the specified initial conditions u0 = 0, x0 = 1, and the time step �t = 0.1, we can advance
the above discretized equations in time through Newton’s method. Figure 1a shows the
time histories of un and xn from n = 0 to 50. If the damping coefficient c is set to zero, the
amplitudes of un and xn remain unchanged and the solution exhibits a periodic feature.

Assume that observational data xm
ob are only available at every other m points. The data

assimilation problem can be formulated as: Find the initial conditions (controls) u0 and x0 for
Eqs. (3) and (4), whose solution best fits the observational data xm

ob. For some cases presented
later, we add random observational errors to the observational data: xm

ob = xm
ob + ε, where

|ε| ≤ 0.1. Thus, the maximum error amplitude is 10% of the prescribed initial condition
x0 = 1. The distribution of observational data xm

ob containing the above error with m = 2
is displayed in Fig. 1a. The generic cost function Jo quantifying the difference between
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FIG. 1. (a) Time histories of xn , un , and xm
ob with random errors |ε| ≤ 0.1, (b) contours of the cost function

Jo: without observational errors, solid lines; with observational errors |ε| ≤ 0.1, dashed lines.

observational data and model data is defined as

Jo = (x − xob)
T O−1(x − xob), (5)

where x stands for the solution vector and xob the observation vector. The superscripts T
and −1 denote the transpose and inverse operations, respectively. Matrix O represents the
observation error covariance matrix and is assumed a diagonal unity matrix so that errors are
uncorrelated. Optimization of the controls is equivalent to minimization of the function Jo.
The contours of the cost function Eq. (5) using the aforementioned observational data with
|ε| = 0 are shown in Fig. 1b. The optimal initial condition (x0, u0) = (1, 0) is enclosed by
crescent-shaped contours, which obscure the search of the optimal solution. As the contour
level increases, the concave sides of these contours are found in the lower-left region of
Fig. 1b. In the presence of observational errors |ε| ≤ 0.1, the contours of the cost function
are slightly modified, but still look similar in shape to those without observational errors
(solid contour lines versus dashed lines in Fig. 1b). With decreasing nonlinearity controlled
by b in Eq. (1), these contours transform to an ellipse-like shape.

The addition of a smoothness penalty constraint P , based on the discrete second deriva-
tives of xn and un (Long and Thacker [5]), to Eq. (5) results in the modified cost function

J = Jo + P, (6)

P = γ
∑

n

Sn, (7)

where

Sn =
{

[(x1 − x0)2 + (u1 − u0)2] if n = 0,

[(xn+1 − 2xn + xn−1)2 + (un+1 − 2un + un−1)2] if n ≥ 1,

and γ is the smoothness penalty coefficient. Figures 2a and 2b display the contours of
P with γ = 0.05 and the contours of J with observational errors |ε| ≤ 0.1, respectively.
Since the contours of the smoothness penalty function P exhibit an ellipse-like shape, the
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FIG. 2. (a) Contours of the smoothness penalty function P with γ = 0.05, (b) contours of: J , solid lines; Jo,
dashed lines. J = Jo + P . Observational errors |ε| ≤ 0.1.

addition of P to Jo tends to reduce the concave contour curvature of the function Jo. For
instance, compare the solid lines with the dashed lines in the vicinity of (x0, u0) = (−1, −5)

in Fig. 2b. Since the P contour level decreases inwards, the smoothness effect diminishes
as the origin is approached.

Although Eq. (7) together with Eq. (6) resembles the quadratic penalty function in the
quadratic penalty method, they are different in nature. That is, using the quadratic penalty
method to find the minimizer of the cost function Jo subject to the constraints imposed by the
two governing equations Eqs. (1) and (2), P in Eq. (6) shall be replaced by γ

∑
[Eq. (3)2 +

Eq. (4)2], converting a constrained minimization problem to an unconstrained one. A larger
γ means less constraint violation, but likely leading to an ill-conditioned problem. The
quadratic penalty method is a weak constraint approach because the constraints are not
strictly satisfied. In contract, the current method is a strong one in that the constraints are
strictly satisfied by integrating the governing equations.

With a guess for initial conditions, we can compute the cost function J . By perturbing
each of the input x0 and u0 in turn and then integrating Eqs. (3) and (4) to obtain the
corresponding perturbation in J , the gradients ∂ J/∂x0 and ∂ J/∂u0 can be approximated
by the second-order central difference method [1]. With these gradients, the limited-memory
quasi-Newton BFGS [4] algorithm is applied to find an improved initial condition for the
next iteration. The above steps are repeated until the convergence criterion is satisfied. Since
the concave contours with large contour levels in Fig. 1b are located in the lower-left region,
we choose (x0, u0) = (−2, −10) as the first guess for the following numerical experiments
to illustrate the effect of smoothness penalty constraints.

The results show that without observational errors the optimal solution (x0, u0) = (1, 0)

is recovered. With observational errors |ε| ≤ 0.1, the solution obtained at every iteration
converges to an optimal solution slightly different from the exact one. If the observation
error covariance matrix O in Eq. (5) is approximated, the above difference can be reduced.
To illustrate the path taken by the minimization process without imposing any smoothness
constraint, we mark in Fig. 3a with circles the locations of initial conditions retrieved at
every iteration. The locus of these initial conditions approximately follows a clockwise
route denoted by a dot-dashed curve to reach the optimal solution.
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FIG. 3. Loci of initial conditions obtained at every iteration of the optimization process with the first guess
(x0, u0) = (−2, −10). (a) Without smoothness constraints P , (b) with smoothness constraints. Solid lines are
contours of: (a) Jo, (b) J . J = Jo + P . Observational errors |ε| ≤ 0.1.

We next impose a smoothness constraint with a specified γ = 0.05, which is obtained by
trial and error. The results show a significant reduction in number of iterations. For instance,
with the convergence criterion[(

x0
k − x0

k−1

)2 + (
u0

k − u0
k−1

)2]1/2 ≤ 0.001, (8)

where the subscript k denotes the iteration number, the case with γ = 0.05 takes 20 itera-
tions to converge, whereas the case without the smoothness constraints takes 34 iterations.
Figure 3b displays the contours of the cost function J for the case with γ = 0.05; notice
that the curvatures in the lower-left region are greatly reduced. We shall examine the locus
of the initial conditions retrieved at every iteration during this minimization. As shown in
Fig. 3b, the modified contours allow the minimization to take a shorter path denoted by a
dot-dashed curve to reach the optimal solution.

3. A GENERIC ALGORITHM

Although the concept of smoothness penalties is not new in the community of meteorol-
ogy and oceanography as noted by Thacker [16], one may wonder whether a similar concept
is put into practice in optimization in other science and engineering. A brief examination of
the smoothness penalty terms in Eq. (7) reminds one of the standard algorithms for nonlinear
constrained optimization, such as quadratic penalty and augmented Lagrangian methods.
For the quadratic penalty method, the penalty coefficient adopted follows a sequence of
increasing values to penalize gradually the constraint violations. The problem tends to be-
come ill-conditioned as the penalty coefficients increase with iterations. Some eigenvalues
of the Hessian matrix increase with the penalty coefficients, while some remain constant
because the number of constraints is usually fewer than the rank of the original Hessian
matrix [7]. So the augmented Lagrangian method is devised to overcome this problem. On
the contrary, as pointed out by Sun and Crook [11], the smoothness penalty constraints
in Eq. (7) shall not dominate in magnitude the original cost function to avoid excessive
alteration of the minimizer. In this case, the penalty coefficients cannot be too large.
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The pure Newton method converges rapidly if the Hessian matrix of the minimization
problem is positive definite and the first guess is close to the minimizer. For practical
applications, these conditions are unlikely to be satisfied, so the pure Newton method
is often modified. One approach involves modification of the Hessian matrix of the cost
function ∇2 Jo to make it more positive definite during the minimization process [7]. The
idea is to modify the eigenvalues of ∇2 Jo by adding a sufficiently positive definite matrix
E so that the modified Hessian matrix

∇2 J = ∇2 Jo + E (9)

becomes more positive definite and better conditioned. In principle, E goes to zero at
convergence. It can be proven via Zoutendijk’s theorem that the global convergence of the
modified line search Newton method follows if the condition numbers of the matrix ∇2 J
are bounded whenever those of ∇2 Jo are bounded during the minimization process [7].
Mathematically, it is expressed as

Ck = ‖∇2 Jk‖
∥∥∇2 J−1

k

∥∥ ≤ D for all iterations k, (10)

where Ck is the condition number of the Hessian matrix ∇2 Jk at iteration k, ‖·‖ denotes
the norm of a matrix, and D is a real positive number. The simplest choice of the matrix
E is ωI where ω is a scalar and I is an identity matrix. Other algorithms along this line
of thought include the modified Cholesky approach. The approach of adding matrix ωI
needs information on negative eigenvalues of ∇2 Jo, while the modified Cholesky method
requires performing Cholesky factorization of the Hessian matrix, which is computationally
expensive for large problems. Thus, application of these two modified Newton methods to
the 4DVAR problems described in Sections 6 and 7 is not practical.

It is noted that solving a system of algebraic equations ∇2 Jk p = −∇ Jk in a minimization
problem is to obtain a search direction p. Addition of the matrix E to the Hessian matrix can
be regarded as a preconditioning technique to the minimization problem for improving the
search direction. One should recognize that solving ∇2 Jk p = −∇ Jk using an efficient pre-
conditioned iterative solver has nothing to do with improving the search direction. Besides,
for large-scale minimization problems, different strategies and algorithms are developed to
construct and store the Hessian matrix and solve the linear system more effectively [7].

In view of numerous successful examples of improving the conditioning of the data
assimilation problems by imposing the smoothness constraints as reviewed in Section 1, it
is speculated that the Hessian matrix of the smoothness penalty function ∇2 P (Eq. (7)) plays
the same role as matrix E in the modified Newton methods. For verification, Figures 4a and
4b display the diagonal entries of the Hessian matrix ∇2 P . The results show that they are
positive everywhere and increase in magnitude as departing from the origin. Computation
of the eigenvalues of the Hessian matrix ∇2 P reveals that 96% of the domain is positive
definite. In addition, the distributions of the condition number C of ∇2 P are found to cluster
around 8. Therefore, matrix ∇2 P is sufficiently positive definite and is well-conditioned as
required for matrix E in Eq. (9) for the modified Newton methods.

In order to investigate the effect of the modified Hessian matrix on the aforementioned
simple dynamic problem, Figure 5 compares the regions associated with positive definite
Hessian ∇2 Jo with those that use a penalty coefficient γ = 0.05. Plotted are two different
densities of data: m = 2 and 4 (note that data xm

ob in Fig. 1a are available at every other
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FIG. 4. Contours of diagonal entries of the Hessian matrix of the penalty term∇2 P . Solid lines, (a) ∂2 P/∂(x0)2,
(b) ∂2 P/∂(u0)2. Dashed lines represent contours of the smoothness penalty function P .

m = 2 point). In comparison with Fig. 5a for m = 2, the region of the positive definite ∇2 Jo

for m = 4 may become narrower or even disconnected as marked by letters A and B in
Fig. 5b. By imposing smoothness penalty constraints, the positive definite area increases
and the narrow positive definite region marked by A in Fig. 5b becomes much wider,
suggesting improvement of the conditioning of the problem. In general, with reduced data
density, the second-order information of the cost function is roughly preserved but distorted
and reduces in magnitude. In contrast, the nature of the smoothness penalty function is
independent of data density, and the contour levels of P and ∇2 P are fixed as shown in
Fig. 4 once the penalty coefficient γ is specified. Consequently, with decreasing data density,
e.g., m = 2, 4, 8 with γ = 0.05, the percentages of the positive definite areas are 46%, 50%,
and 54%, respectively, in an increasing order. The minimizer, however, drifts away from
the actual one with increasing smoothness penalty.

To examine the degree of smoothness effect at every set of (x0, u0), we show in Fig. 6
the ratio R of the penalty function P with γ = 0.05 over the generic cost function Jo with
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Thin solid lines denote contours of Jo. m =: (a) 2; (b) 4, where data are available at every other m points.
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|ε| ≤ 0.1 and m = 2. Because of large R near the corners of Fig. 6 and near the optimal
solution, e.g., contour level 9 with R = 0.397, we expect to see more effect of the smoothness
penalty constraint in these regions. With m = 4, the contours of R look similar but with
higher contour levels. This explains why the smoothness constraint is more effective near
letter A in Fig. 5b than B. One strategy to apply smoothness constraints more uniformly
is to impose a constant R, which maintains smoothness at a certain level relative to the
underlying cost function throughout the minimization process. Based on this principle, the
modified Hessian matrix ∇2 J for m = 2 and 4 are reanalyzed by imposing R = 0.5. Now
91% and 82% of the domain in Figs. 7a and 7b are positive definite as compared with 46%
and 50% in Figs. 5a and 5b which use γ = 0.05.

Evidently a constant R implies varying γ . Thus, in order to achieve uniform effect
of smoothness constraints at every iteration k, a set of penalty coefficients γk shall be
considered to replace a fixed γ . The concept of using a set of penalty coefficients is not
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Thin solid lines denote contours of Jo. m =: (a) 2; (b) 4, where data are available at every other m points.
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new and is applied in the quadratic penalty method. However, as opposed to the quadratic
penalty method in which γk increases with iterations to penalize constraint violations,
γk in the smoothness penalty constraints, in principle, shall decrease with iterations to
approach the actual minimizer as in the generic modified Newton’s method and to satisfy
the global convergence property Eq. (10). That is, if the problem is well-posed and γk

decreases with iterations, condition (10) is likely to be met and the global convergence is
guaranteed.

The use of a constant R, however, does not warrant decrease of γk with iterations and can
deteriorate convergence. To overcome this problem, we propose the following algorithm in
calculation of the smoothness penalty coefficient γk .

Algorithm 1

1. Initialization: γ0 = 1000 (some large number), R◦ = 0.5 (the upper limit on R)
2. Do loop k = 0, 1, 2, . . .

3. Forward integration of the model
4. Calculation of P and Jo

5. R = P/Jo

6. γk+1 = γk

7. IF (R > R◦) THEN
8. P = R◦/R × P
9. γk+1 = R◦/R × γk

10. END IF
11. Minimization
12. End do

R◦ sets a limit on the degree of smoothness constraints that can be applied relative to the cost
function at iteration k. The algorithm ensures that the smoothness penalty function does not
dominate the cost function and is controlled at a desired level locally, namely R ≤ R◦. If
R > R◦, γk has to be adjusted to relax smoothness penalty constraints. As a consequence,
γk can only decrease with increasing k, which is critical in achieving global convergence.
The selection of the optimal R◦ value depends on the nature of the dynamic system because
the curvatures of the controls are problem-dependent. Based on the contours of the ratio R
in Fig. 6, we choose R◦ = 0.5 to test the algorithm on the simple system. With the same
first guess (x0, u0) = (−2, −10), it takes 21 and 37 iterations for m = 2 and 4 to satisfy the
convergence criterion Eq. (8) and the retrieved minimizers are (x0, u0) = (0.980, −0.244)

and (0.978, 0.113). As for γ = 0.05 cases, it takes 20 and 38 iterations for m = 2 and 4 to get
(x0, u0) = (0.974, −0.303) and (0.956, −0.184). The above algorithm seems to produce
slightly improved solutions. The initial γk value obtained from the above algorithm with
R◦ = 0.5 and m = 2 is 0.043, close to the value of 0.05 obtained by trial and error for the
constant γ case. After 16 iterations, γk changes to 0.034 because the condition R > R◦ at
Step 7 of Algorithm 1 is met.

In the following sections, the algorithm will be tested on large 4DVAR problems at dif-
ferent temporal and spatial scales. Unlike the above simple dynamic system, these problems
have much more controls and the tuning of the penalty coefficients is rather time con-
suming. We shall demonstrate that the use of the above algorithm in these problems is
able to effectively determine appropriate penalty coefficients at different scales with a
single R◦.
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4. FOUR-DIMENSIONAL DATA ASSIMILATION MODEL

First, we briefly describe the four-dimensional variational data assimilation technique
(4DVAR) developed for the retrieval of atmospheric flow structures [3]. The technique is
based upon the single-Doppler parameter retrieval system [10] and consists of two compo-
nents: a prediction model and an optimization algorithm. The technique uses methods of
control theory to find three-dimensional wind and temperature fields that best fit observa-
tional data.

4.1. Prediction Model

The 4DVAR technique first solves filtered incompressible Navier–Stokes equations with
Boussinesq approximation, which are subject to a prescribed vertical mean temperature
gradient,

∂Ui

∂xi
= 0 (11)

∂Ui

∂t
+ ∂(U jUi )

∂x j
= − 1

ρ◦

∂ P

∂xi
+ δi3

gθ

�◦
+ ν

∂2Ui

∂x j∂x j
(12)

∂θ

∂t
+ ∂(U jθ)

∂x j
+ U3

d�

dx3
= κ

∂2(θ + �)

∂x j∂x j
, (13)

where U1, U2, and U3 (U , V , and W ) are velocity components in the respective x1, x2,
and x3 (x , y, and z; east, north, and vertical) directions. θ , �, and �◦ are fluctuating,
background, and reference virtual potential temperature, respectively. Repeated indices
imply summation. The eddy viscosity ν and thermal diffusivity κ are functions of height. The
second-order finite volume method is applied for spatial differencing and the second-order
Adam–Bashforth method is used for advancing dependent variables in time. The continuity
equation is satisfied by solving a pressure-Poisson equation derived from Eqs. (11) and (12).
The lateral boundary conditions for U , V , W , and θ fields at each time step are obtained
through linear interpolation between observational data at different times. The gradient-free
boundary condition is imposed at the top of the domain for U , V , and θ fields, whereas for
W field the Dirichlet boundary condition W = 0 is used. If reflectivity data are available, an
additional conservation equation for reflectivity Z shall be included in the numerical model.

4.2. Optimization Procedure

The optimization procedure involves the minimization of a cost function subject to the
constraints imposed by the prediction model equations Eqs. (11)–(13). The generic cost
function Jo is defined as

Jo =
∑

0≤n≤N

(Hxn − yn)T O−1(Hxn − yn), (14)

where the superscript n is the time index, xn is the state vector, and yn is the observation
vector. Since xn and yn can be different variables on different grids, the observation operator
H represents both a transformation between different grid meshes and an analytical function
that relates model variables (i.e., U , V , and W ) to observation variables (i.e., radial velocity
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Vrad). O is the error covariance matrix that includes two sources of error: error in the ob-
servation vector yn and error in the observation operator H. Like the cost function of the
simple harmonic oscillator Eq. (5), we assume that the errors are uncorrelated so that the
observation error covariance matrix O reduces to a diagonal matrix.

A three-dimensional velocity field can be converted to a radial velocity field through the
relation,

Vrad = x − x◦
r

U + y − y◦
r

V + z − z◦
r

(W − VT ), (15)

where (x◦, y◦, z◦) is the coordinates of a remote sensor, such as radar and lidar, and r
represents the distance between a grid point (x, y, z) and (x◦, y◦, z◦). VT is the terminal
velocity of the precipitation. In a dry atmosphere, VT is omitted.

The 4DVAR technique converts the constrained minimization problem into an uncon-
strained problem through the use of the Lagrange function. That is, the constraints including
Eqs. (12), (13), the pressure-Poisson equation derived from Eqs. (11) and (12), and the re-
flectivity conservation equation if applicable, are first multiplied by Lagrange multipliers
λF (also known as adjoint variables), where the subscript F = U , V , W , θ , P , and Z . They
are then appended to the cost function Eq. (14) to form a Lagrange function:

L = Jo +
∑

t

∑
x,y,z

[λU (x momentum equation) + λV (y momentum equation)

+ λW (z momentum equation) + λθ(θ equation) + λP(pressure-Poisson equation)

+ λZ (Z equation)]. (16)

As a result, the constrained minimization of Jo with respect toF becomes the unconstrained
minimization of L with respect to F and λF . The first variation of L with respect to λF
recovers the governing equations; the first variation of L with respect to F yields the adjoint
equations for the adjoint variables. The integration of these adjoint equations backward in
time gives the λF at initial state. That is,

∂L

∂F(x, y, z, 0)
= −λF (x, y, z, 0), (17)

where F = U , V , W , θ , and Z . With these gradients, the limited-memory quasi-Newton
algorithm BFGS [4] is applied to find the initial condition for the prediction model for the
next iteration. This procedure is repeated until the convergence criterion is satisfied and the
resulting solution best fits observational data in a least squares sense. It shall be noted that
the above variational approach does not account for model errors. For instance, if the eddy
viscosity model is based upon Monin–Obukhov similarity theory, the retrieved data tend to
be biased toward satisfaction of the theory that may be inaccurate in some circumstances.
Thus, it is desirable to treat the eddy viscosity and diffusivity as control variables as well.

4.3. Smoothness Penalty Constraints

The smoothness constraint P is composed of the temporal smoothness function Pt and
the spatial smoothness function Ps : P = Pt + Ps . The temporal smoothness function added
to the cost function Eq. (14) takes the form

Pt = γU Pt
U + γV Pt

V + γW Pt
W + γθ Pt

θ + γZ Pt
Z , (18)
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where

Pt
F =

∑
i, j,k

(
F1

i, j,k − F0
i, j,k

)2 +
∑
n≥1

∑
i, j,k

(
Fn+1

i, j,k − 2Fn
i, j,k + Fn−1

i, j,k

)2
, (19)

and the superscript n denotes the time index. The subscripts i , j , and k are the running
indices in the respective x , y, and z directions. The spatial smoothness function appended
to the cost function reads

Ps = ζU Ps
U + ζV Ps

V + ζW Ps
W + ζθ Ps

θ + ζZ Ps
Z , (20)

where

Ps
F =

∑
n

∑
i, j,k

[(
Fn

i+1, j,k − 2Fn
i, j,k + Fn

i−1, j,k

)2 + (
Fn

i, j+1,k − 2Fn
i, j,k + Fn

i, j−1,k

)2

+ (
Fn

i, j,k+1 − 2Fn
i, j,k + Fn

i, j,k−1

)2]
. (21)

In the conventional approach, the smoothness penalty coefficients γF and ζF are determined
by trial and error prior to the minimization.

5. FORMULATIONS FOR TUNING SMOOTHNESS PENALTY CONSTRAINTS

In operational applications, the cost function contains the background term and the
smoothness penalty constraints.

J = Jo + Jb + P, (22)

where Jo is defined by Eq. (14). The second term Jb is the background term, measuring
the difference between the previous forecast (or analysis) and the data to be retrieved. The
reader is referred to Sun and Crook [12] for a description and discussion on this term. The
third term P is a smoothness penalty term that consists of the temporal (Pt ) and spatial
(Ps) smoothness functions.

Let F denote the model dynamic variables U , V , W , θ , and Z . The formulae for determi-
nation of temporal and spatial smoothness penalty coefficients for each dependent variable
are given by

Rt
F = γF Pt

F
Jo + Jb

(23)

and

Rs
F = ζF Ps

F
Jo + Jb

, (24)

where Rt
F designates the ratio of the temporal smoothness penalty constraint over (Jo + Jb)

for model variable F . Similarly, Rs
F is for the spatial smoothness constraint. The above

two formulae correspond to Step 5 of Algorithm 1, which is to control the level of the
smoothness constraints based on the local cost function. Since the smoothness constraints
are applied to all dependent variables, one can derive the following relationship:

Pt + Ps

Jo + Jb
= Rt

U + Rt
V + Rt

W + Rt
θ + Rt

Z + Rs
U + Rs

V + Rs
W + Rs

θ + Rs
Z

= R◦. (25)
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Recall that Pt and Ps are defined by Eqs. (18) and (20). Substitution of Eqs. (18) and (20)
into the numerator on the left-hand side of the above equation yields the sum of all ratios
R◦, which is the upper limit of the total smoothness constraint over the total data misfit. R◦
is normally prescribed as a number less than 1.0 as the previous simple dynamic problem
suggests. Each smoothness penalty coefficient can then be determined through Step 7 to
Step 10 of Algorithm 1.

The performance of the algorithm for 4DVAR is first evaluated through identical twin
experiments (ITE) on the retrieval of micro-scale turbulent structures in an atmospheric
convective boundary layer. For the ITE experiments, observational data are generated by
the prediction model of the 4DVAR and various sources of error can be added to the
observational data to investigate the retrieval sensitivity to the observational error. We
then apply the algorithm to retrieve mesoscale atmospheric flow using real Doppler radar
data. Evaluation of the algorithm on micro- and mesoscale problems can address the issue
about the sensitivity of R◦ value to the problems of the same nature but different physical
scales.

6. APPLICATION TO MICROSCALE FLOW RETRIEVAL

USING SYNTHETIC LIDAR DATA

6.1. Generation of Observational Data

The data were first generated by the NCAR-Large-Eddy-Simulation (NCAR-LES) code,
which was written by Moeng [6] and improved by Sullivan et al. [9] for the study of the
atmospheric boundary layer. The results from the NCAR-LES code were used as the initial
conditions for the prediction model of the 4DVAR. A computational domain 5 × 5 × 2 km3

is resolved by a grid size 48 × 48 × 48, resulting in spatial resolutions of 104 m and
42 m in the respective horizontal and vertical directions. These are typical lidar range
resolutions. The convective boundary layer (CBL) is driven by a geostrophic wind 10 ms−1

and a temperature flux 0.24 K · ms−1. A capping inversion layer is imposed at zi = 980 m,
the CBL height. A Coriolis parameter appropriate to mid latitudes f = 10−4 s−1 and a
roughness height z◦ = 0.16 m are used. The stability parameter −zi/L , where L is the
Monin–Obukhov length, is 15. A moving reference frame is applied to both the prediction
model and the NCAR-LES code through the Galilean transformation to relax the numerical
stability limit and increase the size of time step.

We recorded a total of 13 three-dimensional instantaneous data sets with a time interval
of 25 seconds. The vertical distributions of velocity variances of the simulated CBL are
exhibited in Fig. 8. Those in a typical CBL measured by Lenschow et al. [2] at various
stability parameters −zi/L are also displayed for comparison. They are in good agreement.

The “simulated” velocity fields are then converted to “observed” radial velocity fields
through Eq. (15) with VT = 0 because of the dry air. Assume that there is only one lidar
located at (x, y, z) = (0, 0, 21) m. These 13 three-dimensional radial data sets are then
used to construct two volume scan data sets. Only four horizontal planes of radial velocity
data are provided every 25 seconds, sweeping from the surface to the top of the boundary
layer twice: from frame 1 to 6 and then from frame 7 to 12. Above the inversion layer
(k > 24; k, the vertical grid index), turbulence intensity is rather weak, no structures are to
be retrieved, and data there are solely provided by frame 13. The assimilation time window
is five minutes.
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FIG. 8. Vertical distributions of normalized velocity variances for the simulated CBL (solid lines). Field data
(denoted by symbols) measured by Lenschow et al. (1980) are also displayed for comparison. The free-convection
scaling velocity w∗ is 2 ms−1.

6.2. Simplification of Formulae

We assume that observational errors are uncorrelated and reflectivity data are not avail-
able. Since no data interpolation between different grids is required, the data misfit Eq. (14)
can be simplified to the form

Jo =
∑
S, T

[
ηV

(
Vrad − V o

rad

)2]
, (26)

where V o
rad denotes the input radial velocity, and Vrad is its model counterpart. ηV is the

weighting coefficient for radial velocity and is taken as unity. S and T stand for the spatial
and temporal extents of the assimilation window. The background term Jb in Eq. (22) is
omitted in the ITE experiments.

Lin et al. [3] demonstrated that the temporal smoothness penalty constraint becomes less
effective in a moving reference frame. Since our ITE experiments are conducted in a refer-
ence frame, which moves at a constant speed of 5 ms−1 (half the geostrophic wind speed),
to extend numerical stability limit and allow a large time step, the temporal smoothness
penalty constraint in these experiments is deactivated to reduce the computational cost.

In Algorithm 1 and Eq. (25), the parameter R◦ is used to control the weighting of smooth-
ness constraints according to the misfit between model data and observational data at each
iteration. For the ITE experiments, we impose the following condition:

Ps/Jo = Rs
U + Rs

V + Rs
W + Rs

θ = R◦. (27)

Note that Rs
Z is omitted because no reflectivity data are available and solving the reflectivity
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conservation equation is unnecessary. By imposing the smoothness constraint on each de-
pendent variable with a given R◦, the smoothness penalty coefficients ζF can be determined
through Algorithm 1 if the ratios Rs

U , Rs
V , Rs

W , and Rs
θ are specified. For instance, by choos-

ing R◦ = 0.5 and dividing it equally among all variables, we have Rs
U = Rs

V = Rs
W = Rs

θ =
0.125. We first study the cases having the weighting of Rs

U = Rs
V = Rs

W = Rs
θ , then compare

them with the cases having different Rs
F values.

The first guess for the ITE experiments is based on the assumption that the horizontal
velocity components with a horizontal spatial resolution of 417 m (equivalent to every
four grid points) and 20% of random relative errors are measured by a velocity tracking
technique [17]. The horizontal velocity at other grid points can be computed using bi-
linear interpolation. The vertical velocity fluctuation is then derived from the continuity
equation [3].

To measure the quality of the retrieved data, the correlation coefficient σF and the root-
mean-square (RMS) error εF of the retrieved data at every time step and at every vertical
level are calculated. The correlation coefficient is defined as

σF = F ′ · F ′◦√
F ′2 ·

√
F ′2◦

, (28)

where F ′ designates any retrieved fluctuating velocity component or temperature, and F ′
◦

represents its exact counterpart. The overline denotes spatial averaging over an x − y plane.

6.3. Results

The results from the ITE experiments after 30 iterations are tabulated in Table I. The
correlation coefficient between retrieved data and exact data and the RMS error of retrieved
data in Table I are averaged throughout the boundary layer. In these experiments, we de-
grade the quality of observational data by adding random errors to the radial velocity. Four
different error amplitudes, Aε = 0.0, 0.5, 1.0, and 1.5 ms−1, are used. The random error
with Aε = 0.5 ms−1 (an RMS value of 0.29 ms−1) roughly corresponds to the error present
in a measurement taken on a day with the very clear air and averaging on 100 lidar pulses
over a range of 3 km.

For cases ITE01, ITE02, and ITE03 without observational errors, we see that R◦ = 0.5
yields better results than that without penalizing smoothness constraints, while R◦ = 1.0
has negligible effect on retrieval. With Aε = 0.5 ms−1, case ITE05 with R◦ = 0.2 retrieves
data of about the same quality as case ITE08, which uses the fixed smoothness penalty
coefficients: ζU = ζV = ζW = 0.00005 and ζθ = 0.001. Note that these fixed coefficients are
the optimal values obtained by trial and error [3]. Case ITE06 with R◦ = 0.5 yields slightly
less accurate results than case ITE05 with R◦ = 0.2, while case ITE07 suggests that the ratio
R◦ = 1.0 produces an over-smoothness effect. With increasing error amplitude Aε = 1.0 and
1.5 ms−1, the results show consistently that the ratio R◦ = 0.2 yields better results than other
R◦ values and outperforms cases using the fixed penalty coefficients.

Figure 9 shows the variation of the smoothness penalty coefficient with respect to the
number of iterations for case ITE10, which uses R◦ = 0.2 and Aε = 1.0 ms−1. A compari-
son with the fixed coefficients (Fig. 9) finds that the algorithm generates larger smoothness
coefficients at the early stage of assimilation, possibly acting to accelerate convergence by
reducing irregular curvatures as illustrated by the solid curves versus the dashed curves in
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TABLE I

Identical Twin Experiments

Case Aε R◦
a σU σV σW σθ εU εV εW εθ

ITE01 0.0 0.0 0.93 0.94 0.89 0.69 0.33 0.36 0.42 0.20
ITE02 0.0 0.5 0.94 0.95 0.93 0.71 0.30 0.32 0.35 0.19
ITE03 0.0 1.0 0.92 0.94 0.90 0.68 0.36 0.38 0.45 0.18
ITE04 0.5 0.0 0.91 0.91 0.86 0.67 0.37 0.40 0.49 0.21
ITE05 0.5 0.2 0.92 0.93 0.90 0.69 0.34 0.37 0.41 0.20
ITE06 0.5 0.5 0.91 0.93 0.87 0.67 0.37 0.40 0.49 0.18
ITE07 0.5 1.0 0.86 0.88 0.80 0.63 0.49 0.51 0.62 0.18
ITE08 0.5 fixedb 0.92 0.93 0.89 0.70 0.35 0.37 0.42 0.19
ITE09 1.0 0.0 0.85 0.87 0.78 0.64 0.48 0.51 0.64 0.23
ITE10 1.0 0.2 0.89 0.90 0.86 0.66 0.42 0.44 0.50 0.19
ITE11 1.0 0.5 0.86 0.89 0.81 0.63 0.48 0.50 0.61 0.18
ITE12 1.0 fixedb 0.87 0.89 0.83 0.66 0.45 0.47 0.55 0.21
ITE13 1.5 0.0 0.80 0.82 0.72 0.59 0.56 0.59 0.75 0.24
ITE14 1.5 0.2 0.86 0.88 0.82 0.64 0.47 0.49 0.57 0.19
ITE15 1.5 0.5 0.84 0.87 0.77 0.62 0.51 0.53 0.65 0.18
ITE16 1.5 fixedb 0.82 0.83 0.75 0.61 0.54 0.57 0.68 0.22

Aε , random error amplitude ms−1; σF , correlation coefficient between retrieved data and exact data; εF , RMS
error of retrieved data in ms−1 for velocity and in K for temperature. σF and εF are averaged throughout the
boundary layer.

a All the cases except those with “fixedb” assume Rs
U = Rs

V = Rs
W = Rs

θ .
b Fixed smoothness coefficients: ζU = ζV = ζW = 0.00005 and ζθ = 0.001.
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FIG. 9. Variations of the smoothness penalty coefficients ζF with respect to the number of iterations for case
ITE10. The fixed ζF values used in case ITE12 are also shown for comparison.
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FIG. 10. Horizontal fluctuating velocity vectors and contours of vertical fluctuating velocity in ms−1 at
z/zi = 0.085 for cases (b) ITE05, (c) ITE10, (d) ITE14, which use R◦ = 0.2. The corresponding exact data are
shown in (a). Aε , random error amplitude.

Fig. 2b. As the solution improves with increasing iterations, the coefficients reduce to about
the same order of magnitudes as the fixed coefficients (Fig. 9) and keep decreasing with
iterations. This is an appealing feature because decreasing coefficients indicate the smooth-
ness constraint being maintained at a desired level with respect to the local cost function and
shall lead to more accurate solutions. Figure 10 displays the horizontal fluctuating velocity
vectors and the contours of the vertical fluctuating velocity near the surface for cases ITE05,
ITE10, and ITE14. These cases use the same R◦ = 0.2 and contain random errors of various
amplitude. We see that most of flow structures, such as convergence lines and divergence
regions, are retrieved regardless of the error amplitude.

In what follows we investigate the effect of differing Rs
F . The ratios Rs

U : Rs
V : Rs

W : Rs
θ for

cases ITV01, ITV02, ITV04, and ITV05 in Table II are roughly weighted by the availability
of data. It is based on the principle that if there are more observational data, the minimization
relies less on the smoothness penalty constraint. Since there is no temperature data, a stricter
smoothness constraint is imposed on temperature. In the current CBL, which is driven by a
geostrophic wind of 10 ms−1 and a temperature flux, the U velocity component is expected
to be larger than the V and W velocity components and the radial velocity possibly contains
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TABLE II

Identical Twin Experiments

Case R◦ Rs
U : Rs

V : Rs
W : Rs

θ σU σV σW σθ εU εV εW εθ

ITV01 0.2 1 : 1 : 1 : 2 0.85 0.87 0.82 0.64 0.49 0.51 0.56 0.19
ITV02 0.2 2 : 3 : 3 : 12 0.84 0.86 0.81 0.65 0.50 0.52 0.56 0.19
ITV03 0.2 Ps

U : Ps
V : Ps

W : Ps
θ 0.86 0.88 0.80 0.62 0.47 0.50 0.60 0.19

ITV04 0.5 1 : 1 : 1 : 2 0.84 0.87 0.78 0.62 0.50 0.52 0.63 0.18
ITV05 0.5 2 : 3 : 3 : 12 0.85 0.88 0.80 0.65 0.48 0.50 0.61 0.17
ITV06 0.5 Ps

U : Ps
V : Ps

W : Ps
θ 0.84 0.87 0.77 0.61 0.51 0.53 0.66 0.18

The Rs
F values depend on the R◦ value and the ratio Rs

U : Rs
V : Rs

W : Rs
θ . Aε = 1.5 ms−1.

more information about U than V and W . Thus, cases ITV02 and ITV05 place more weights
on Rs

V and Rs
W than Rs

U . We first apply the above principle to temperature in cases ITV01
and ITV04, then extend it to velocity as well in cases ITV02 and ITV05. The above guideline
merely suggests the relationship of Rs

U ≤ Rs
V ≈ Rs

W ≤ Rs
θ . The specification of their values

remains arbitrary. It is found that case ITV05 can yield better results than ITE15 in Table I,
which uses the same R◦ value but imposes uniformly the smoothness constraints on different
variables. Nonetheless, the same weighting does not apply to different R◦ values, e.g., case
ITV02 versus case ITE14 in Table I. Cases ITV01 and ITV04 do not produce better results
than cases ITE14 and ITE15 either. As for case ITV03 and ITV06, a different weighting
scheme is examined. The Rs

F values in these cases are weighted by the degree of smoothness
of each variable, measured by the penalty function Ps

F , Eq. (21). It is based on the hypothesis
that a larger Ps

F (less smooth F) requires a stricter smoothness penalty constraint. This can
be achieved by assuming that the values of ζF for all variables are the same and are equal to
c. The c value at each iteration is obtained through c(Ps

U + Ps
V + Ps

W + Ps
θ )/J◦ = R◦. The

results of the two cases (Table II) are not as good as the uniform constraint cases.
In general, we can draw the following conclusions. First, by elaborate tuning of the Rs

F
values, it is possible to get better results. However the optimal weighting of Rs

F for one
R◦ does not necessarily apply to a different R◦. Second, the use of uniform smoothness
constraints on different variables yields consistently good results regardless of the R◦ value.
Therefore, in the next section regarding the applications of the method to meso-scale flow
retrieval, we will apply the smoothness constraint uniformly on different variables.

Before closing this section, we shall discuss the role played by the condition R > R◦ at
step 7 in Algorithm 1. Consider the variation of the penalty coefficient ζF for case ITE10
shown in Fig. 9. In the first few iterations, the condition R > R◦ is not satisfied and the
coefficients ζF are not updated and remain constant. Without this condition, a fixed ratio
R◦ is strictly enforced at each iteration and ζF are updated accordingly. As a result, all of
the ζF values increase in the first few iterations and the minimization process is terminated
abruptly. The problem, of course, is attributable to the violation of the global convergence
criterion discussed in Section 3. It is also observed that an over-smoothed first guess for
the initial conditions results in small values of the penalty functions Ps

F , which then generate
large ζF . The large ζF subsequently produce much smoother F model data. This adverse
cycle continues to produce larger and larger penalty coefficients as the iteration goes on.

In the quasi-Newton L-BFGS method, two conditions are used to determine a step length
in a given search direction: a sufficient decrease condition and a curvature condition [7]. The
first guess for the initial conditions of model variables U , V , W , θ usually is estimated from
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the mean or relatively large-scale observations. The over-smoothness of the first guess, the
increasing ζF described above, and the satisfaction of the above step-length conditions can
result in a large step length. As a consequence, the over corrections to the initial conditions
occur and the numerical instability follows. Thus, the condition R > R◦ at step 7 in the
algorithm is to avoid over-smoothness on variables that have sparse or no observational
data, which tend to cause the above problem. In spite of the imposed condition R > R◦,
Fig. 9 shows that the preferred condition R = R◦ is satisfied in most of iterations. We
also tried cases that impose the condition R > R◦ only in the first 10 iterations. But the
minimization also stopped later, suggesting that the condition R > R◦ should be enforced
throughout the minimization to ensure stability.

7. APPLICATION TO MESOSCALE FLOW RETRIEVAL

USING REAL DOPPLER RADAR DATA

In order to examine the performance of the algorithm using real data, we apply the method
to a four-dimensional variational Doppler radar analysis system (VDRAS). VDRAS was
designed to assimilate a time series of radar observations (radial velocity and reflectivity)
from single or multiple Doppler radars. For a detailed presentation of the system and its real-
time application, the reader is referred to Sun and Crook [14]. Here we only provide a brief
description. The constraining numerical model is similar to that described in Section 4.1.
There are five prognostic equations: one for each of the three velocity components U , V , W ,
the potential temperature fluctuation θ , and the reflectivity Z . The pressure is diagnosed
through a Poisson equation. By fitting the model to observations over a specified time period,
a set of optimal initial conditions for the constraining numerical model can be obtained.

The cost function, which measures the misfit between the model variables and both
the observations and a prior estimate, is defined by Eq. (22). The first term of Eq. (22)
Jo represents the discrepancy from the radar observations. Since we neglect errors in the
observations and in the observation operator, the function Jo [Eq. (14)] is expressed as

Jo =
∑
S, T

{
ηV

[
H(Vrad) − V o

rad

]2 + ηZ [H(Z) − Zo]2
}
. (29)

As compared with Eq. (26) for ITE, an additional term appears on the right-hand side of
the above equation due to the availability of reflectivity data Z . The superscript o denotes
the observations, and Vrad is related to the Cartesian velocity components through Eq. (15).
Since the model data is displayed on a Cartesian grid and the radar data is on a spherical
grid, the model radial velocity and the reflectivity must be transformed to the spherical grid
by an observation operation H [14]. The diagonal entries of the matrix O−1 in Eq. (14) ηV

and ηZ are the weighting coefficients for radial velocity and reflectivity, respectively, and
are assigned unity. Reflectivity is one of the model prognostic variables while the model
radial velocity has to be computed from the model Cartesian velocity components through
Eq. (15), in which the terminal velocity VT is estimated using the reflectivity data.

The background term Jb in Eq. (22) measuring the discrepancy from the previous analysis
or forecast is incorporated in the real data experiments. The reader is referred to Sun and
Crook [12–14] for a description and discussion on this term. The formulae for tuning the
temporal and spatial smoothness penalty coefficients are given by Eqs. (23) and (24).

Since the previous ITE experiments show that R◦ = 1.0 tends to over-smooth the data,
the real data experiments are conducted using different values of R◦ in the range of 0.1 to
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FIG. 11. (a) Reduction of the radial velocity misfit with respect to number of iterations. (b) Variation of the
smoothness coefficient ζU with number of iterations.

0.5. We evenly distribute the value of R◦ to the ratios of different dynamic model variables:
Rt
F = Rs

F = R◦/10 where F = U , V , W , θ , and Z .
The radar data used in the experiments were observed by the WSR-88D KLWX radar

located at Sterling, Virginia, in the afternoon of June 15, 1998. The data depict a strong
thunderstorm outflow that propagates southeastward at a speed of around 13 ms−1. In the
numerical model, we use a grid resolution of 3 km in the horizontal and 375 m in the
vertical with a grid mesh of 50 × 50 × 7. The assimilation time window is 10 min, which
covers three radar volume scans. By iteratively minimizing the cost function Eq. (22) using
the optimization procedure described in Section 4.2, an optimal set of the model variables
can be obtained. The optimal solution matches the observations as closely as possible and
satisfies the constraining equations.

We evaluate the quality of the retrieval using the radial velocity misfit and the subsequent
forecast initialized by the retrieved fields. The forecast is verified by the radial velocity
observations. All the experiments with different values of R◦ in the range of 0.1 to 0.5 show
an improved fit to the radial velocity observations as compared with the fixed coefficient
case. Figure 11a shows the reduction of the radial velocity misfit with respect to the number
of iterations from the experiments with R◦ = 0.3. The solid curve is from the experiment with
the algorithm and the dashed curve with fixed penalty coefficients. The penalty coefficients
ζU from these two experiments are shown in Fig. 11b. As observed from this figure, the
coefficient determined by the algorithm reduces rapidly in a few iterations, resembling
those in the microscale retrieval (Fig. 9). As the penalty coefficients continue to decrease
in magnitude with iterations, the minimization is able to find a closer fit to the observations
as indicated by the solid line in Fig. 11a. This is not surprising by considering the principle
of the modified Newton method, which is to reduce the influence of the matrix E in Eq. (9)
near the minimizer to obtain a more accurate solution.

To examine whether the retrieval with a closer fit to the radial velocity observations
improves the subsequent forecast, two forecasts were produced using the retrieved fields
from the experiments with fixed penalty coefficients and with the algorithm, respectively.
To verify the forecast, the radial velocity from the forecast was interpolated to the grid of the
radial velocity observations, and the RMS error was calculated. The boundary conditions at
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FIG. 12. Time history of radial velocity RMS error.

the initial time were applied throughout the entire forecast period. The radial velocity RMS
errors from these two forecasts are shown in Fig. 12. The results show that the forecast
utilizing the proposed algorithm has a smaller RMS error throughout the forecast period.
It should be noted that since the domain of the retrieval and the forecast is only 150 km,
the error in the boundary conditions can have a rather large influence on the forecast. As a
result, the forecast error converges to the same value as the forecast time increases.

Similar forecast experiments were also conducted with other values of R◦. The results
show that when R◦ equals 0.1 or 0.2, the forecast with the algorithm produced larger
RMS forecast error than that with the fixed coefficients although the retrieval fits to the
observations much closer. It indicates that the long-time evolution of smaller scale features in
the retrieved fields obtained by fitting closer to the observations may not be well predicted by
the numerical model, hence they become noise that degrades the forecast. Our experiments
show that R◦ = 0.3 produces the best forecast. In comparison with the value R◦ = 0.2 found
in Section 6, it seems to suggest that a slightly larger value of R◦ should be used with real
data for the purpose of forecast.

It is quite encouraging to find that the optimal R◦ values for both microscale and mesoscale
applications are about the same. In contrast, the fixed coefficient approach uses quite differ-
ent values of penalty coefficients for microscale and mesoscale retrieval, e.g., 0.00005 [3]
and 0.05 [11], respectively. The algorithm is able to control the degree of smoothness
constraint throughout minimization and generates more accurate results, attributable to the
satisfaction of the global convergence criterion, Eq. (10). A potential application of the algo-
rithm is in the development of an adaptive 4DVAR technique that integrates data of various
sources at different scales, such as lidar and radar data. While passing and assimilating data
through different grid levels, the smoothness constraints can be applied in a more consistent
and uniform manner without elaborate tuning of the weights of the smoothness constraints.
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8. CONCLUSIONS

The use of smoothness penalty constraints in the assimilation of atmospheric and oceanic
data into dynamic models is known to improve the conditioning of the minimization prob-
lems. The coefficients of the smoothness constraints, however, could be several orders of
magnitude different for different problems. To devise an effective way to determine the
weights, we have studied a simple dynamic system. It is found that penalizing smoothness
constraints makes the modified Hessian matrix of the cost function more positive definite.
The concept is akin to the modified Newton methods that modify the Hessian matrix of
the objective function to make it more positive definite and better conditioned. Due to the
nature of the smoothness penalty function, there is no warranty that the constraints can
be uniformly applied at every iteration during the minimization process. One strategy to
control the level of smoothness locally is to adjust the weights of smoothness according to
the local cost function by fixing the ratio of the smoothness constraints over the cost func-
tion. Although the approach of fixed ratio makes the modified Hessian matrix much more
positive definite, the condition required for the global convergence may not be satisfied due
to random large weights resulted. Based on these observations, we propose an algorithm
that is able to determine the weights of smoothness constraints following the idea of fixed
ratio but ensures monotonic decrease of the smoothness coefficients.

We first apply the algorithm to a simple harmonic oscillator problem, then test it on the
retrieval of microscale turbulent structures in the atmospheric convective boundary layer
through the approach of identical twin experiments. The identical twin experiments allow
assessment of the sensitivity of the proposed method to the amplitude of observational error.
The results indicate that a ratio R◦ around 0.2 tends to give better results regardless of the
error amplitude.

We finally apply this method to the Doppler radar data, depicting a strong thunderstorm
outflow. The results show consistently that the algorithm yields more accurate retrieval than
the approach of fixed coefficients. To examine whether the retrieval with a closer fit to
the observations improves the subsequent forecast, we use the retrieved data as an initial
condition for the forecast model to predict the atmospheric state. The results suggest that a
slightly larger value of R◦ = 0.3 should be used to get a better forecast. A larger R◦ imposes
stronger smoothness constraints on small-scale flow structures, suggesting that the presence
of small-scale structures is not favorable to prediction. Since the optimal R◦ values for both
microscale and mesoscale applications are about the same, the algorithm may effectively
reduce the effort in tuning the smoothness weights when applying the same 4DVAR system
with a single value of R◦ to the problems of the same nature but varying physical scales.

In summary, we have applied the proposed algorithm first to a simple harmonic oscillator
problem, with increasing complexity, to the retrieval of microscale turbulent structures using
synthetic lidar data, and then to the retrieval of a mesoscale severe thunderstorm outflow
using real Doppler radar data. All the experiments indicate that the proposed algorithm,
which tunes the smoothness penalty constraints based on data misfit at every iteration, pro-
duces better results than the conventional approach using constant smoothness coefficients.
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